Podkladová analýza pro následnou realizaci protipovodňových opatření včetně přírodně blízkých protipovodňových opatření v Mikroregionu Frýdlantsko

A.2. ANALÝZA SOUČASNÉHO STAVU ÚZEMÍ
A.2.3 Hydromorfologická analýza

Sloupský potok

Květen 2015

Zhotovitel: Společnost VRV + SHDP
Subdodavatel: Agentura regionálního rozvoje, spol. s r.o.

VRV
SWECO
HYDROPROJEKT

ARR
Agentura regionálního rozvoje
Podkladová analýza pro následnou realizaci protipovodňových opatření včetně přírodně blízkých protipovodňových opatření v Mikroregionu Frýdlantsko

A. 2. ANALÝZA SOUČASNÉHO STAVU ÚZEMÍ

A. 2. 3. Hydromorfológická analýza

SLOUPSKÝ POTOK

Pořizovatel:

DSO Mikroregion Frýdlantsko
Nám. T. G. Masaryka 37
Frýdlant
464 01

Zhotovitel: Společnost VRV + HDP

Vodohospodářský rozvoj a výstavba a.s.
Nábřežní 4/90
Praha 5
150 56

Sweco Hydroprojekt a.s.
Táborská 31
Praha 4
140 16

Řešitel:

Agentura regionálního rozvoje spol. s r.o.
U Jezu 525/4
Liberec
460 01

V Liberci, květen 2015.
OBSAH:

1 Analýza GMF potenciálu a HMF stavu .. 6
 1.1 Metodika .. 6
 1.1.1 Základní souvislosti .. 6
 1.1.2 Účel hodnocení ... 6
 1.1.3 Kritéria hodnocení ... 7
 1.2 Analýza geomorfologického potenciálu přirozeného stavu vodopisné sítě ... 8
 1.2.1 Členění na úseky .. 8
 1.2.2 Úsek 1 (4,050 – 4,400 ř.km) ... 8
 1.2.3 Úsek 2 (4,400 – 4,900 ř.km) ... 10
 1.2.4 Úsek 3 (4,900 – 5,830 ř.km) .. 11
 1.2.5 Úsek 4 (5,830 – 9,800 ř.km) ... 11
 1.2.6 Charakteristika řešených úseků .. 12
 1.2.7 Grafy GMF potenciálu ... 13
 1.3 Hydromorfologická analýza – stávající stav ... 18
 1.3.1 Charakteristika řešených úseků ... 18
 1.3.2 Závěry analýzy stávajícího stavu .. 19
 1.4 Hydromorfologická analýza – návrhový stav ... 19
 1.4.1 Závěry analýzy návrhového stavu ... 19
1 Analýza GMF potenciálu a HMF stavu

Pozn.: vysvětlení zkratek:
GMF – geomorfologické
HMF - hydromorfologické

1.1 Metodika

1.1.1 Základní souvislosti

V roce 2008 byla zpracována metodika „Metodika odboru ochrany vod, která stanovuje postup komplexního řešení protipovodňové a protierozní ochrany pomocí přírodě blízkých opatření“. Plné znění metodiky je uvedeno na stránkách MŽP:
http://www.mzp.cz/cz/pracovni_postupy_podklady

Tato metodika (tzv. podrobná metodika), která byla publikována ve Věstníku MŽP XVIII/11, listopad 2008, poskytuje komplexní řešení pro analýzu přirozeného potenciálu vodních toků, přes určení současného stavu, návrhu opatření a vyhodnocení dosažených efektů (hydromorfologie, protipovodňová ochrana) v projektu GIS na základě podrobných technických dat o vodních tocích a nivách.

Metodika umožňuje vícekriteriální analýzou dat v prostředí GIS projektu vypracovat analýzu stavu odklonu jednotlivých lokalit od potenciálu dynamické rovnováhy vodního toku (100 % - maximálně dosažitelný potenciál, srovnávací stav) ve vymezené části vodopisné sítě v povodí. Na základě dosažených výsledků je možné následně navrhovat taková opatření, která zajistí dobrý hydromorfologický stav vod (60 % potenciálu dynamické rovnováhy vodního toku) nebo se k tomuto stavu co nejvíce přiblížit.

Stěžejním přínosem je skutečnost, že navržený systém opatření řeší požadavky na dobrý ekologický stav vod v rozsahu hydromorfologické složky (Směrnice Evropského parlamentu a Rady 2000/60/ES, kterou se stanoví rámec pro činnost Společenství v oblasti vodní politiky, tzv. Rámcová směrnice o vodách). Z hlediska užívání této metodiky při usměrňování provozních a stavebních aktivit zasahujících do vodních toků, je možné metodiku využít v případech, kdy je vyhotoven projekt GIS, a jsou shromážděna podrobná data včetně potřebných analýz. Ovšem pro proces užívání podrobné metodiky v situacích, kdy není možné z časových či jiných důvodů provést podrobný průzkum zájmového území, je její podrobnost nutně přizpůsobit tak, aby byla snadnější uchopitelná a aplikovatelná i v omezených podmínkách pro širší okruh uživatelů. Z uvedených důvodů by byl zpracován v gesci odboru ochrany vod MŽP zjednodušený pracovní postup (tzv. zjednodušená metodika), umožňující zajištění kompatibilních výsledků s již uveřejněnou verzí podrobné metodiky, a to pouze s minimálním zatížením nepřesnostmi způsobenými subjektivním hodnocením v těch ukazatelích, kde nebudou k dispozici exaktní data.

1.1.2 Účel hodnocení

Účelem metodiky je zejména poskytnout operativní pracovní nástroj pro jednotný postup hodnocení zásahů do vodních toků a údolních niv jako podporu rozhodování o vhodnosti a efektivitě posuzovaných projektů s vazbou na požadavky Rámcové směrnice o vodách. Na základě požadavků Rámcové směrnice o vodách je využíván zjednodušený postup hodnocení opatření v projektových dokumentacích, realizovaných v souvislosti s realizací projektů, na vodních tocích a v nivách, nikoli o metodiku výběru úseků vodních toků vhodných pro přírodní či zemědělské opatření. Dále je možné zjednodušenou metodiku využít k úpravám parametrů navrhovaných opatření v projektových dokumentacích, realizovaných v souvislosti s realizací projektů, na vodních tocích a v nivách, nikoli o metodiku výběru úseků vodních toků vhodných pro přírodní či zemědělské opatření. Dále je možné zjednodušenou metodiku využít k úpravám parametrů navrhovaných opatření v projektových dokumentacích, realizovaných v souvislosti s realizací projektů, na vodních tocích a v nivách, nikoli o metodiku výběru úseků vodních toků vhodných pro přírodní či zemědělské opatření. Dále je možné zjednodušenou metodiku využít k úpravám parametrů navrhovaných opatření v projektových dokumentacích, realizovaných v souvislosti s realizací projektů, na vodních tocích a v nivách, nikoli o metodiku výběru úseků vodních toků vhodných pro přírodní či zemědělské opatření.
zhoršení hydromorfologického stavu vod. Metodika nenahrazuje biologické hodnocení, ale stanovuje míru dosažení nebo odklonu vodního toku od přirozeného potenciálu hodnocené lokality.

1.1.3 Kritéria hodnocení

Při vyhodnocení hydromorfologického stavu vodního toku se používá přesně definovaný soubor kritérií. Výsledky hodnocení vychází z dat a podkladů (ukazatelů), které jsou zpracovány v nižší popsaných datových souborech. Výsledné hodnoty se pohybují v rozpětí 0 – 100 %. Se stoupající hodnotou je sledované kritérium v lepším stavu vzhledem na hydromorfologický stav. Na základě vyhodnocení jednotlivých kritérií je možné definovat hlavní příčiny nevyhovujícího stavu vodního toku a následně určit opatření k zlepšení stavu.

Morfologie trasy hlavního koryta a nivních ramen je stanovena a vyhodnocena na základě ukazatelů:

1. Zachování přirozeného vývoje trasy hlavního koryta
2. Morfologie trasy
3. Akumulace plaveného dřeva
4. Výskyt a zachování přirozeného vývoje nivních koryt

Morfologie koryta je vyhodnocena na základě ukazatelů:

1. Rozsah a charakter úpravy
2. Příčný řez
3. Podélný profil toku
4. Opevnění levého a pravého břehu
5. Opevnění dna
6. Aktuální stav opevnění
7. Akumulace plaveného dřeva

Vzdutí a migrační bariéry jsou vyhodnoceny na základě ukazatelů:

1. Evidence vzdutých úseků
2. Migrační prostupnost objektů

Uvedený výčet není úplný, jsou dále sledovány i další ukazatelfe (např. odběry vody, vliv bariér atd.). Na základě výše uvedených ukazatelů lze určit hydromorfologický stav vodního toku před a po navrženém konkrétním opatření. Je hodnocen samostatně vodní tok a jeho niva. Úplný postup nelze stručně uvést, je uveden např. ve Věstníku Ministerstva životního prostředí z 11/2008 (Metodika odboru ochrany vod, která stanovuje zjednodušený postup hodnocení vlivu opatření na vodních tocích a nivách na hydromorfologický stav vod).
1.2 Analýza geomorfologického potenciálu přírozeného stavu vodopisné sítě

Analýza využívá členění toku na čtyři úseky – popsané dále.

1.2.1 Členění na úseky

Pro účely této studie byl Sloupský potok rozčleněn na čtyři úseky. Každý úsek zaujímá takovou délku území, kde má tok a niva podobné charakteristické vlastnosti. Podrobněji je členění uvedeno v Tab. 3. Dále je členění patrné z grafické přílohy.

<table>
<thead>
<tr>
<th>Název úseku</th>
<th>Staničení [ř. km]</th>
<th>Popis úseku</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Počátek</td>
<td>Konec</td>
</tr>
<tr>
<td>Úsek č. 1</td>
<td>0,000</td>
<td>4,050</td>
</tr>
<tr>
<td>Úsek č. 2</td>
<td>4,050</td>
<td>4,400</td>
</tr>
<tr>
<td>Úsek č. 3</td>
<td>4.400</td>
<td>4.900</td>
</tr>
<tr>
<td>Úsek č. 4</td>
<td>4.900</td>
<td>5.830</td>
</tr>
<tr>
<td>Úsek č. 5</td>
<td>5.830</td>
<td>9.800</td>
</tr>
</tbody>
</table>

1.2.2 Úsek 1 (0,000 – 4,050 ř.km)

Charakteristika úseku

Podkladová analýza pro následnou realizaci protipovodňových opatření včetně přírodě blízkých protipovodňových opatření v Mikroregionu Frýdlantsko

A.2.3. Hydromorfologická analýza – Sloupský potok

Na toku Sloupského potoka se v řešeném území nacházejí dvě vodní nádrže: boční rybní Haken (cca 0,500 ř. km) a Malý Štolpich (4,060 ř. km, částečně v k.ú. Hejnice).

Obr. 1.46 – Kamenný propustek na drobném lesním přítoku Sloupského potoka.

Obr. 1.47 – Kamenný propustek na Viničné cestě.

Obr. 1.48 – Rybník Haken.

Obr. 1.49 – Rybník Malý Štolpich.
Podkladová analýza pro následnou realizaci protipovodňových opatření včetně přírodě blízkých protipovodňových opatření
v Mikroregionu Frýdlantsko
A 2.3. Hydromorfologická analýza – Sloupský potok

<table>
<thead>
<tr>
<th>Délka úseku (dle DIBAVOD)</th>
<th>4,050 [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sklon toku (dle vrstevnic ZM10)</td>
<td>0,011 [-]</td>
</tr>
<tr>
<td>Plocha povodí (dle DTM)</td>
<td>8,698 [km²]</td>
</tr>
</tbody>
</table>

1.2.3 Úsek 2 (4,050 – 4,400 ř. km)
Charakteristika úseku
Jedná se úsek toku pod obcí Ferdinandov, tok je zde blízký svému přirozenému charakteru. Úsek začíná v místě soutoku s Malým Sloupským potokem, a končí se začátkem zástavby intravilánu obce. Vodoteč protéká rovinatou krajinou extravilánu obce, tok lemuje doprovodná zeleň, širší okolí tvoří TTP. Úsek toku je bez opevnění.

Obr. 1 – Pohled po proudu, větvení toku
Obr. 2 – Pohled po proudu, široké koryto

<table>
<thead>
<tr>
<th>Délka úseku (dle DIBAVOD)</th>
<th>0,350 [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sklon toku (dle vrstevnic ZM10)</td>
<td>0,021 [-]</td>
</tr>
</tbody>
</table>

1.2.4 Úsek 3 (4,400 – 4,900 ř. km)
Charakteristika úseku
Jedná se úsek toku, který je lokálně v konkávních březích a u mostů opevněn kamennými zdmi a v některých místech kamennou rovninanou. Úsek začíná v místě, kde tok opouští zástavbu obce a pokračuje až do místa, kde začíná koncentrovaná zástavba jádra obce. Tok protéká rozptýlenou zástavbou prolnutou trvalými travními porosty, v rámci úseku je třikrát přemostěný.
Podkladová analýza pro následnou realizaci protipovodňových opatření včetně přírodě blízkých protipovodňových opatření v Mikroregionu Frýdlantsko
A 2.3. Hydromorfologická analýza – Sloupský potok

Obr. 3 – Pohled proti proudu, jednostranné Obr. 4 - Pohled po proudu, jednostranné opevnění opevnění kamennou zdí kamennou rovninanou

<table>
<thead>
<tr>
<th>Délka úseku (dle DIBAVOD)</th>
<th>0,500 [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sklon toku (dle vrstevnic ZM10)</td>
<td>0.029 [-]</td>
</tr>
</tbody>
</table>

1.2.5 Úsek 4 (4,900 – 5, 830 ř.km)
Charakteristika úseku
Jedná se o úsek toku se zkapacitněným korytem – tok je oboustranně opevněn kamennou zdí, dno je zpevněno lokálně (místy je ponecháno řečiště žulových balvanů), na toku jsou vytvořeny stupně o výšce více než 1m. Úsek probíhá místem nejhustší zástavby jádra obce až k místu, kde tok vstupuje do lesa, zde je na toku umístěna přehrážka.

Obr. 5 – Pohled proti proudu, tok mezi zástavbou Obr. 6 – Pohled proti proudu, stabilizace podélného sklonu dnovými stupnì

<table>
<thead>
<tr>
<th>Délka úseku (dle DIBAVOD)</th>
<th>0,930 [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sklon toku (dle vrstevnic ZM10)</td>
<td>0.058 [-]</td>
</tr>
</tbody>
</table>

1.2.6 Úsek 5 (5, 830 – 9,800 ř.km)
Charakteristika úseku
Jedná se o úsek vodního toku v lesním komplexu CHKO Jizerské hory, vodní tok je na většině délky v přírodě blízkém stavu. Úsek začíná vstupem toku do lesa a končí v pramenné oblasti. Na horní části toku se nachází
Podkladová analýza pro následnou realizaci protipovodňových opatření včetně přírodě blízkých protipovodňových opatření v Mikroregionu Frýdlantsko
A 2.3. Hydromorfologická analýza – Sloupský potok

Propustek (betonová trubka DN 500), přes tok vedou tři dřevěné lávky a jeden most, v jehož blízkosti je část koryta oboustranně opevněná kamennou zdí.

<table>
<thead>
<tr>
<th>Délka úseku (dle DIBAVOD)</th>
<th>3,970 [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sklon toku (dle vrstevnic ZM10)</td>
<td>0.139 [-]</td>
</tr>
</tbody>
</table>

Obr. 7 – Pohled po proudu, balvanité řečiště
Obr. 8 – Pohled po proudu, opevnění koryta před mostem

1.2.7 Charakteristika řešených úseků

Úsek 1
Charakteristika úseku je popsána v kapitole 1.2.2.

Úsek 2
Dle hodnocení trendů geomorfologických korytotvorných procesů se úsek toku nachází v oblasti anastomózního větvení meandrujícího nebo vinoucího se koryta (AB). Úsek vykazuje znaky tohoto geomorfologického typu – tj. větvení toku, tok nemeandruje, jedná se spíše o vinoucí se koryto. Vodoteč protéká oblastí s relativně nízkým sklonem (0,021), nivu tvoří louky a pastviny, vodoteč je doprovázena pásem vzrostlých dřevin.

Úsek 3
Dle hodnocení trendů geomorfologických korytotvorných procesů se úsek toku nachází v oblasti větvení štěrkonosného vinoucí se koryta (GB). Na úseku nedochází k větvení, jedná se jen o vinoucí se koryto, přirozené procesy se zde nemohou rozvinout v důsledku charakteru nivy, tj. rozptýlená zástavba obce a související nesouvislé opevnění břehů toku. Tok protéká plochou nivou s podélným sklonem údolnice 0,029 – v nivě se střídá zástavba s plochami TTP.

Úseky 4 a 5
Dle hodnocení trendů geomorfologických korytotvorných procesů se úseky toku nacházejí v oblasti divočení koryt ve štěrkovém nebo písčitém poli (BR). Úsek 4 vykazuje znaky tohoto geomorfologického typu – koryto toku v sevřeném údolí, řečiště z žulových balvanů - vysoký sklon úseku (0,139). Vodoteč protéká lesním komplexem CHKO Jizerské hory, tok je pozměněn pouze v místech, kde je zbudován propustek, nebo mosty (lokální opevnění). Úsek 3 je svým charakterem odlomen od podoby původního GMF typu. Tok protéká zastavěnou oblastí jádra obce, v bezprostřední blízkosti toku jsou situovány budovy. V důsledku charakteru nivy je tok
zkapacitněn - koryto je opevněno kamennou zdí a podélý sklon stabilizován dnovými stupni, poříční zóna je zcela oddělena od vodního toku.

1.2.8 Grafy GMF potenciálu

![Diagrams of hydrogeomorphological processes - Sloupský potok, section 1](image)
Podkladová analýza pro následnou realizaci protipovodňových opatření včetně přírodě blízkých protipovodňových opatření v Mikroregionu Frýdlantsko

A.2.3. Hydromorfologická analýza – Sloupský potok

Podélný skon údolnice

Průměrný roční průtok \([m^3 \cdot s^{-1}] \)

Trendy geomorfologických korytových procesů - úsek 2

- divočení koryt v štěrkovém nebo písčitém řečišti - průměrný zdroj splavenin v povodí - BR
- divočení koryt v štěrkovém nebo písčitém řečišti - extrémní zdroj splavenin nebo absence vegetace - BR
- větvení štěrkonosného vinoucí se koryta - GB
- anastomózní věvení meandrujícího nebo vinoucího se koryta - AB
- plně vyvinuté meandrování - MD
- hranice tvorby koryta (mokřady, prameniště)
- výsledný GMF typ
Podkladová analýza pro následnou realizaci protipovodňových opatření včetně přírodě blízkých protipovodňových opatření v Mikroregionu Frýdlantsko
A.2.3. Hydromorfologická analýza – Sloupský potok

Trendy geomorfológiekých korytových procesů - úsek 3

![Graph]

- **divočení koryt v štěrkovém nebo písčitém řečišti** - průměrný zdroj splavenin v povodí - BR
- **divočení koryt v štěrkovém nebo písčitém řečišti** - extrémní zdroj splavenin nebo absence vegetace - BR
- **větvení štěrkonosné vinoucí se koryta** - GB
- **anastomózní věvení meandrujícího nebo vinoucího se koryta** - AB
- **plně vyvinuté meandrování** - MD
- **hranice tvorby koryta (mokřady, prameniště)**
- **výsledný GMF typ**
Podkladová analýza pro následnou realizaci protipovodňových opatření včetně přírodě blízkých protipovodňových opatření v Mikroregionu Frýdlantsko
A.2.3. Hydromorfologická analýza – Sloupský potok

Trendy geomorfologických korytovních procesů - úsek 4

Průměrný roční průtok [m³.s⁻¹]

Podélný skon údolnice

- divočení koryt v šťrkovém nebo písčitém řečišti - průměrný zdroj splavenin v povodí - BR
- divočení koryt v šťrkovém nebo písčitém řečišti - extrémní zdroj splavenin nebo absence vegetace - BR
- větvení štěrkonosného vinoucí se koryta - GB
- anastomózní věvení meandrujícího nebo vinoucího se koryta - AB
- plně vyvinuté meandrování - MD
- hranice tvorby koryta (mokřady, prameniště)
- výsledný GMF typ
Podkladová analýza pro následnou realizaci protipovodňových opatření včetně přírodě blízkých protipovodňových opatření v Mikroregionu Frýdlantsko

A.2.3. Hydromorfologická analýza – Sloupský potok

Trendy geomorfologických korytových procesů - úsek 5

Průměrný roční průtok [m³ s⁻¹]

Podélný skon údolnice [\(\ell\)]

Trendy geomorfologických korytových procesů:

- Divočení koryt v štěrkovém nebo písčitém řečišti - průměrný zdroj splavenin v povodí - BR
- Divočení koryt v štěrkovém nebo písčitém řečišti - extrémní zdroj splavenin nebo absence vegetace - BR
- Větvení štěrkonosného vinoucí se koryta - GB
- Anastomózní věvení meandrujícího nebo vinoucího se koryta - AB
- Plně vyvinuté meandrování - MD
- Hranice tvorby koryta (mokřady, prameniště)
- Výsledný GMF typ
1.3 Hydromorfologická analýza – stávající stav

1.3.1 Charakteristika řešených úseků

Úsek 1
Charakteristika úseku je popsána v kapitole 1.2.2.

Úsek 2
V úseku nejsou průtoky ovlivněny, transport splavenin probíhá v původním rozsahu. Koryto je původní přirozené bez úprav, dochází k větvení toku, lokálně se vyskytuje dřevní hmota. Úsek je bez vzdutí, migračně průchodný.

Nivu toku tvoří trvalé travní porosty (louky a pastviny), tok je lemován doprovodnou zelení vzrostlých stromů. Příční zóna je vůči na vodní tok, zóna aktivní inundace je zachována.

TOK: 79.62 % optimálního hydromorfologického stavu (klasifikace „DOBRÝ STAV“)
NIVA: 59.94 % optimálního hydromorfologického stavu (klasifikace „STŘEDNÍ STAV“)

Úsek 3
V úseku nejsou průtoky ovlivněny, transport splavenin probíhá v původním rozsahu. Morfologie trasy koryta je ovlivněna lokalními opevňovacími zařízeními na toku (kamenné zdí, kamenná rovnanina), dno toku je bez opevnění. Na toku se vyskytuje dřevní hmota spíše sporadicky, úsek je bez vzdutí a je migračně průchodný.

Nivu toku tvoří zástavba obce prolnutá s plochami trvalých travních porostů. Aktivní inundace je zúžena o 50 %, příční zóna je částečně oddělena od vodního toku.

TOK: 52.73 % optimálního hydromorfologického stavu (klasifikace „STŘEDNÍ STAV“)
NIVA: 31.75 % optimálního hydromorfologického stavu (klasifikace „POŠKOZENÝ STAV“)

Úsek 4
Úsek není ovlivněn odběry vody, transport splavenin je omezen ve středním rozsahu - na úseku se objevují objekty, které omezuji chod splavenin (přehrádka konci úseku). Koryto toku je oboustranně opevnoeno kamennou zdí (alespoň, co se týká části toku, které jsou v terénu dostupné - místy je niva znepřístupněna zaplocením soukromých pozemků), profil koryta je obdélníkový. Podélný profil je stabilizován kaskádovou stabilaizačními stoupátky ve dně. Výskyt dřevní hmoty v korytě je minimální, úsek je migračně neprůchodný (viz přehrádka a stupně na toku).

Niva toku je významně antropogenně změněna, je tvořena zástavbou obce – pozemky či budovy přiléhají přímo k toku. Příční zóna je zcela oddělena od vodního toku, aktivní inundace je významně zúžena.

Výsledné hodnocení:
TOK: 40.21 % optimálního hydromorfologického stavu (klasifikace „VELMI DOBRÝ STAV“)
NIVA: 2,62 % optimálního hydromorfologického stavu (klasifikace „VELMI DOBRÝ STAV“)

Úsek 5
Úsek není ovlivněn odběry vody, transport splavenin probíhá v původním rozsahu. Přirozený vývoj trasy koryta probíhá v souladu se stavením dynamické rovnováhy lokality - mimo lokální opevňování koryta v případě jednoho přemostění a propustku, se jedná o balvanité řečiště s vysokým průměrným sklonem. Na toku se vyskytují prostorově významné struktury dřevní hmoty. Úsek je bez vzdutí a je migračně průchodný.
Niva toku je v zachoválem, přírodě blízkém stavu, tvořena lesním komplexem CHKO Jizerské hory. Přírodní zóna je zcela vázána na vodní tok, aktivní inundace je zachována.

Výsledné hodnocení:
TOK: 81,49 % optimálního hydromorfologického stavu (klasifikace „VELMI DOBRÝ STAV“)
NIVA: 97,14 % optimálního hydromorfologického stavu (klasifikace „VELMI DOBRÝ STAV“)

1.3.2 Závěry analýzy stávajícího stavu
Na základě znalostí charakteristiky řešených úseků byla pro každý tento úsek provedena klasifikace hydromorfologického stavu. Stav toku je souhrnně uveden v Tab. 4 a Tab. 5. Graficky jsou výsledky hydromorfologické analýzy zobrazeny na mapě v příloze.

Tab. 2 – Souhrnné hodnocení optimálního hydromorfologického stavu v %

<table>
<thead>
<tr>
<th>ÚSEK 1</th>
<th>ÚSEK 2</th>
<th>ÚSEK 3</th>
<th>ÚSEK 4</th>
<th>ÚSEK 5</th>
<th>VÁŽENÝ PRŮMĚR</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOK</td>
<td>79.50</td>
<td>79.62</td>
<td>52.73</td>
<td>40.21</td>
<td>81.49</td>
</tr>
<tr>
<td>NIVA</td>
<td>71.43</td>
<td>59.94</td>
<td>31.75</td>
<td>2.62</td>
<td>97.14</td>
</tr>
</tbody>
</table>

Tab. 3 – Klasifikace hydromorfologického stavu

<table>
<thead>
<tr>
<th>Hodnocení optimálního stavu v %</th>
<th>Klasifikace hydromorfologického stavu</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 - 100 %</td>
<td>velmi dobrý stav</td>
</tr>
<tr>
<td>60 - 80 %</td>
<td>dobrou stav</td>
</tr>
<tr>
<td>40 - 60 %</td>
<td>střední stav</td>
</tr>
<tr>
<td>20 - 40 %</td>
<td>poškozený stav</td>
</tr>
<tr>
<td>0 - 20 %</td>
<td>zničený stav</td>
</tr>
</tbody>
</table>

1.4 Hydromorfologická analýza – návrhový stav

1.4.1 Závěry analýzy návrhového stavu
Vzhledem k tomu, že koryto i niva ve stávajícím stavu dosahují dobrého hydromorfologického stavu nejsou navrhována žádná opatření. Stav toku tedy odpovídá tabulce 4.